NO4-18366

3rd NASA Symposium on VLSI Design 1991 8.3.1

Formal Verification of an MMU and MMU Cache
E. T. Schubert

Division of Computer Science
University of California, Davis

Abstract - We describe the formal verification of a hardware subsystem consist-
ing of a memory management unit and a cache. These devices are verified in-
dependently and then shown to interact correctly when composed. The MMU
authorizes memory requests and translate virtual addresses to real addresses.
The cache improves performance by maintaining a LRU list from the memory
resident segment table.

1 Introduction

Computers are being used in areas where no affordable level of testing is adequate. Safety
and life critical systems must find a replacement for exhaustive testing to guarantee their
correctness. Through a mathematical proof, hardware verification can formally demon-
strate that a design satisfies its specification. However, hardware verification research has
focused on device verification and has largely ignored system composition verification [1].
Our research is directed towards developing a methodology to verify a hardware base for
a safety critical system. The top level hardware specification is apt to suggest a unitary
implementation. This abstraction is convenient for verifying the correctness of software,
however, the implementation consists of many different interacting components (CPU,
memory, coprocessors, I/O devices, bus controllers, interrupt controllers, etc). This paper
will describe our efforts to verify a subsystem consisting of a MMU and its cache using the
HOL theorem prover [2].

The abstract MMU reported in {3] assumed a memory model where a read request was
satisfied in one cycle. We extend the MMU to interact with an asynchronous memory.
Additionally, the memory is more fully described; providing read and write functions.
These changes required several significant changes to the abstract MMU proof script. The
original proof strategy took advantage of the single cycle response time. The new strategy
must use two arbitrary contents to define when memory words are returned from the
memory-cache subsystem.

1.1 Related Work

Hardware verification requires that the design of a system is formally shown to satisfy
its specification through a mathematical proof. Using theorem proving techniques, an
expression describing the behavior of a device is proven to be equivalent in some sense
to an expression describing the implementation structure of the device. These expressions
concisely describe the behavior of devices in an unambiguous way. An additional benefit of
hardware verification is that the behavioral semantics of the hardware are clearly defined.
This provides an accurate basis for building correct software systems [5].

IR
i

a secure operatlng syste I

8.3.2

Hardware verification efforts thus far have focused primarily on a microprocessor as

the base for computer systems [6], [7], [8], [9]. The processors verified have modeled small
instruction sets and generally, have not included modern CPU features such as pipelines,
multiple functional units and hardware interrupt support. Tamarack-3 [9] and AVM-1 [10]
do provide sufficient interrupt support to connect with an interrupt controller. However, no

system currently verlﬁed prov1des the rnernory management functlons necessary to support

cted verttrcally vertﬁed system.s w:th a
microprocessor/memory as the system’s base [11],(5],[1]. These efforts have aimed at il-

Previous efforts to venfy systems have const

lustrating how hardware verification can be used to close the semantic gap between hlgh

level Tanguages and the computer’s instruction set. However, the base for these systems (a
microprocessor-memory pair) has been an unrealistic hardware platform.

1.2 HOL

The object language of HOL is a formulatlon of higher-order logic. Universally quantified
variables are used to specify input and output device lines while internal device lines ‘are
existentially quantlﬁed Conditional expressmns are in the form ~cond —then-clause i
else-clause. -V LTI P e R
HOL provides the human verifier with & selectlon of tactlcs for use in goal dlrected
proofs. The tactics are very similar to the kinds of steps a human theorem prover would
take in sblvmg a goal. New tactics can be written that allow the theorem prover to be

 extended and customized for a particular task. New theorems can only be created in

a controlled manner. All proofs can be reduced to one containing only the 8 pnmxtxve
inference rules and 5 primitive axioms. High-level inference rules and tactics derived from
some combination of primitive inference rules.

The following HOL expression defines an and gate implementation using an inverter
and a nand gate. The existentially quantified variable p, represents an internal line which
links the output of the nand gate with the input of the inverter.

F4;andGate a b out = 3p nand a b P A inv p out

2 Memory Management Unit

[12] describes a number of memory management units which form a complexity hierarchy.
By developing a sophisticated MMU in steps, the construction of the final proof appears
to be more tractaBIe The simpler devices validate access to fixed length memory pages
while the_g_r_lgye complex devices authorize read, write or execute access to variable length
segments and trans virtual addresses to real addresses. Many of these devices were
designed and verified to the gate level. However, as the complexity increases, the emphasis
of the verification shifts from gate level connections to the correctness of the operating
system sulk)pﬁgrt feﬁtﬁi‘es T

The device described below vahdates memory requests based on mformatlon mamta.med
in a memory resxdent ‘segment descriptor table. The location of the table is determined by a

vt L WRRER LR T T iy m

3rd NASA Symposium on VLSI Design 1991 8.3.3

segment table pointer register which is accessible only during supervisor operations. Each
descriptor consists of two words: the first contains access control information (present bit,
read/write/execute permissions, segment size) and the second serves as the base address
for the segment’s real location in memory. To translate from a virtual address to a real
address, the MMU adds the segment offset to the segment base address. The MMU assumes
the table provides an entry for all possible segment descriptors.

A generic theory for a class of MMU devices is defined where several functions and
data types are left abstract. Using an abstract representation, details such as word length,
can be omitted and the verification focuses only on the correctness of higher level abstrac-
tion (e.g. electronic block level rather than gate level). At a later point, the abstract
representation can be instantiated with components that implement concrete behavior.

Support for generic or abstract theories is not directly provided by HOL. However,
a theory about abstract representations can be defined in the object language [10]. An
abstract representation contains a set of uninterpreted constants, types, abstract operations
and a set of abstract objects. The semantics of the abstract representation is unspecified.
Inside the theory, we do not know what the objects and operations mean. The abstract
theory package also creates a set of selector functions [11] to extract desired functions from
an abstract representation.

The abstract MMU representation generalizes traits particular to concrete implemen-
tations. Properties such as the the exact security policy and division of a virtual address
into a segment identifier and offset (as well as the overall number of bits in an address),
are hidden by functions which given an address, return the segment identifier or segment
offset field (segId and segOfs, respectively). There is also a function segIdshf which
“returns the offset of a segment descriptor within the memory resident segment table for
a given address. Since descriptors require two words, the implementation of this function
simply shifts the segment identifier to the left one bit position (e.g. it adds a trailing zero
bit).

The abstract functions selected by availBit, readBit, writeBit and execBit extract
a bit value from an argument of type *wordn. These functions are applied to the first word
of a segment descriptor.

Several functions which operate on two-tuples are available. Given a pair of *wordn
values, add returns a value of *wordn. Functions addrEq, ofsLEq and validAccess replace
the bitVector comparison units defined for the more concrete units.

Additional abstract coercion functions are available to convert values between types. If
the theory were instantiated, the abstract types would likely be implemented with bitVec-
tors; leaving these functions unnecessary.

Memory is also treated abstractly. The abstract representation provides a fetch function
fetch.

8.3.4

let mmu_abs = new. abstract -Tepresentation

(‘segId’, ":(*address -> *wordn)"),
(‘seg0fs®, “:(*address -> *wordn)");
(‘segldshf‘, *":(*address -> *wordn)");
(‘availBit‘, ":(*wordn -> bool)");
(‘readBit‘, ":(*gordn -> bool)");
E:writaBi?‘, ":E*wordn -> boolg" ;,
execBit‘, ":(*wordn -> bool)" ;
(‘add‘, “:(*wordn # »wordn ->*wordn)");
(‘addrEq , ":(»address # *address -> bool)");
(‘ofsLEq‘, “:(xaddress # *wordn ~-> bool)");
(‘validAccess®, ___
' ", (*a&dresS’f'*wordn # RVE -> bool)“)
(f‘val’, ":(*wordn -> num)"),
(‘wordn* , ":(num-> *wordn)");
(‘address‘, *:(*wordn -> *address)" :
(fetch‘ " (*memory # »address) -> *wcrdn")'

A type abbrewatlon RWE is also deﬁned to be a three tuple of bit va.lues Selector
functlons rBIT, wBIT and eBIT access the first, second and third bits, respectively.

722 1 Spec1ﬁcat10n

The spec1ﬁcat10n is decomposed 1nto several rules and 1gn0res txmlng characterlstlcs The
state and output environment of the MMU specification is a three- tuple consisting of a
boolean acknowledgment, a memory address and the table pointer register value. The

variable rin the definitions below is the abstract representation.
Functions superMode and userMode describe the behavior of the MMU when operating
in their respective modes. legaldccess uses many of the abstract functions to fetch

from memory the appropriate segment descriptor and compare it with the request’s act

parameters. vToR constructs a real address from a virtual address.”

FacrlegalAccess 1 vAddr thIPtr rwe mem = let a = (fetch r)(mem,(address r)((add r) (segIdshf r
vAddr,tblPtr))) in ((validAccess r) (vAddr,a,rwe) A (ofsLEq r) (vAddr,a))

taesvToR r vAddr tblPtr mem = let a = (fetch r) (mem,(address r)((add r)((wordn r 1), (add
r)(segIdshfr vAddr tblPtr)))) in (address r) ((add r) (segOfs r vAddr, a))

Fd,}euperMode T vAddr rwe tblPtrADDR thPtr data mem = ((wBIT rwe) A (addrEq r
(vAddr,tblPtrADDR))) —-»(T vAddr data) — (T, vAddr, tblPtr)

Fd,fuserMode T vAddr rwe thPtrADDR thiPtr data mem = legalAccess r vAddr tblPtr rwe
mem —(T, (vToR r vAddr tbIPtr mem), tbIPtr) — (F, vAddr, tblPtr)

Fdosmmu.spec 1 vAddr rwe tblPtrADDR tbIPtr data mem superv = superv —superMode r
vAddr rwe tbIPtrADDR tbhIPtr data mem — userMode r vAddr rwe thIPtrADDR tblPtr data mem

W owmo 0w i

BomAme R

| I

3rd NASA Symposium on VLSI Design 1991 8.3.5

2.2 Implementation

The implementation is constructed from electronic block model components. These are
defined as specifications for the behavior of a gate level implementation. Many of the
devices specify their timing behavior as well. The building blocks consist of a security
comparison unit, an address match unit, a memory fetch unit, an adder, registers, latches,
muxes, and a control unit. Most of the device definitions are straight forward with the
exception of the memory and the control unit. These two units will be described in greater
detail.

F4es secUnit_spec r a b Iwe ok = V t. ok (t+1) =

((validAccess) ((a t),(b t),(xve t)) A (ofsLEq r) ((a t),(b t)))
l4es addUnit_spec T a be=VY t:num. ¢ (¢+41) = (add r ((a t),(b t)))
Fdes muxUnit_spec r a b out @ =¥ t.(out(t+1))=(w(t+1))— address r(b(t+1))i(a t)
4y mux3Unit_spec a b c out w = V t:num.

(out t)=(wt=0)—»at | (vt=1)-Dbt | ct
b4e; splitUnit_spec r virt id ofs = VY t:num.

((id t) = (segldshf 1) (virt t)) A ((ofs t) = (seghfs xr) (virt t))
4y latchUnit_spec r i out ctrl = Y t:num.

out (t+1) = ctrl (t+1) — out t | (i (%+1))
4ey TogUnit_spec r i 1d clr out =

(V t:num. out(t+1)=(clr t— (vordnr 0) | 1d ¢t — i t| out t))

A (out 0 = (wordn r 0))
4y matchUnit_spec r a bm = V (t:num). m(t+1) = (addrEq r (a t, b t)) — T | F"

Memory Unit

As a first step towards composing devices, the memory specification used for the MMU
verification is significantly expanded from the model used in [3]. The earlier model assumed
a read-only memory that returned a value one clock cycle after a request was made. The
new model defines asynchronous read and write operations. This model makes an implicit
assumption that each memory request is satisfied before the next request is generated.
Most of the new proof effort centered on establishing the correctness of the MMU control
unit with the new memory specification.

4. memoryUnit_spec T req Iwe addr data done mem =
(done 0 = F) A
(V t. (req t) —
(3 t’. Next domne (t, t+t’) A
(wBIT (rwe t) =>
((mem (t+t’) = store r (mem t,addr t,data t))) |
((data (t+t’) = fetch r (mem t,addr t)) A

(mem (t+t’) = mem t))))
((done (t+1) = F) A
(mem (t+1) = mem t)))

Control Unit

To process each memory request, the control unit will pass through several clocked
phases. At each clock tick the control unit may change its phase depending on the results
computed by the other internal units and the MMU input from the system bus. The control
unit state is maintained by the variable phase. There are six distinct phases, however,

8.3.6

not all phases are executed for each request. Which phases are executed depends on the
validity of the memory request. Request evaluation begins with the control unit in phase
0 and completes when phase 0 is again reached. A valid request will require five phases
with a delay of at least one time unit before each phase change.

vAddr -

[] on @

[T

IADDR
"Dens [P il
dats address
compare
unit
] Adder
RW ecurity Control
Compare] Unit
Usit
super
fdome xlat
done
ACK
RWE

. TAddr

7 Iiéure 1: Abstract MMU Internal Block Diagram

The dataPath definition describes the interconnection between all the units other than
the control unit.

h;,f dataPath r vAddr vData rwe mem tblPtrADDR tblPtr rAddr muxC
tmpC tblC 1C rReq xlat match secOK fdone =

J (muxi mux2 id ofs addOut data latOut secData.

(reglnit_spec r vData tblC bitFalse tblPtr) A

(regUnit_spec r data +tmpC bitFalse secData) A

(secUnit_spec r vAddr secData rwe secOK) A
(splitUnit_spec r vAddr id ofs) A
(mux3Unit_spec id ofs (oneUnit_spec r) muxi muxC) A
(mux3Unit_spec tblPtr data latOut mux2 muxC) A
(addUnit_spec T muxl mux2 addOut) A
(latchUnit_spec r addOut latOut 1C) A
(matchUnit_spec r vAddr tblPtrADDR match) A
(muxUnit_spec T vAddr latOut rAddr xlat) A

(memoryUnit_spec r rReq rAddr data fdone mem)

The implementation definition connects the datapath with the control unit. The state
consists of the table pointer register value, the security Data register and the control unit
phase (tblPtr, secData, phase). The input environment is provided by the system bus
and the memory (vAddr, vData, rwe, superv, reqIn, mem). The output environment
includes a real address and several control unit outputs (rAddr, done, ack, xlat). The
memory address of the table pointer register is specified by the constant tb1PtrADDR.
Correctness Statement

Several auxiliary definitions are used to express the final correctness statement. To
relate the implementation to the specification, a temporal abstraction is constructed using
the two predicates Next and First[9]. The predicate First is true when its argument ¢ is

the first time that g is true. The predicate Next is true when 2 is the next time after 1

I e

I e

I

3rd NASA Symposium on VLSI Design 1991 8.3.7

F4.y controlUnit_spec reqln super rve match secOK fdone muxC tmpC tblC
1C rReq xlat done ack phase =
((muxC 0,tmpC 0,tblC 0,1C 0,rReq 0,xlat O,done 0,ack O,phase
0)=(0,F,F,F,F,F,F,F,0))
A

(V t .(muxC(t+1),tmpC(t+1),tb1C(t+1),1C(t+1) ,TReq(t+1) ,xlat(t+1) ,done(t+1),

ack(t+1) ,phase(t+1)) = Y M ttl rxda P J
Y U mba eloc H ¥
% X plt qtnk A
(phase t = 0) — (reqln t — (0o, F,F,F, F,F,F,F, 1) |
(0o, F,F,F, F,F,E,F, 0)) |
(phase t = 1) — (super t — -

((wBIT (rwe t)) A match t) — (o, F,T,F, F,F,F,F, 5) |
(0, F,F,F, F,F,T,T ,0) |
(2, TrF:Tn TpT.FaFn 2)) l
((phase t = 2) A fdone t) — (1, ¥,F,F, T,T,F,F, 3) |
((phase t = 3) A fdone t) — (secOK t — (O, F,F,F, F,T,F,F, 4) |
(o, F,F,F, F,F,T,F, 0)) |
(phase t = 4) — (0, F,F,T, F,T,T,T, 0) |
(phase t = 5) hend (0, F,F,F, F’FaTvT »0) I

(muxC t,tmpC t,tblC t,1C t, F ,xlat t,done t,ack t,phase %))

that g is true. The predicate stable_sigs states that between tI and ¢2 the MMU inputs
will remain constant.

Fae First g t = (V p:time. p<t = (g p)) A (g t)
Faes Wext g (£1,82) = (t1<22) A
(V t:time . ti<t A t<t2 = - (g t)) A (g t2)
Fics stable_sigs t1 t2 vAddr rve tb1lPtrADDR data
mem super = V t’. t1 < ¢’ A t’ < t2 =
(super t’ = super t1) A (vAddr t’ = vAddr t1) A (zve t’ = rwe t1) A
(data t’ = data t1) A (tblPtrADDR t’ = tblPtrADDR t1) A (mem t’ = mem t1)

The correctness theorem states that if the implementation is in phase 0 and a memory
request is made, the implementation will eventually respond (c time steps later), when
the state of the implementation matches the state defined by the specification for a set of
given MMU inputs. The inputs must remain stable until the MMU responds to a request.
If a memory request is not made, the acknowledgment line remains F, the phase remains
0 and the MMU table pointer register remains unchanged.

F mmu_imp r vAddr vData rwe super tblPtr tblPtrADDR
reqIn rAddr done ack xlat mem phase =
(V t. (phase t = 0) =
(reqIn t —
(3 ¢. Next done(t,t + c) A (phase(t + c)=0) A
(stable_sigs t (t + c) vAddr rwe tblPtrADDR
vData mem super =
(mmu_spec r (vAddr t) (rve t) (tblPtrADDR t)
(tblPtr t) (vData t) (mem t) (super t)
= ack(t + c),rAddr(t + c),tblPtr(t + ¢))))
I ((ack(t + 1) = F) A
(phase(t + 1) = 0) A
(tblPtr(t + 1) = tblPtr t))))

8.3.8

3 Memory Subsystem

An initial design integrated a FIFO cache stack inside the MMU but here we model a fully
associative cache as part of the memory subsystem. The cache is described as a lookup
table and implements a least recently used (LRU) replacement strategy. Each table entry
consxsts of a key, a related data Word and a boolean indicating whether the entry is actxve

by the cache 1mplementatxon 7

TAB_ENTRY = ":bool¥#+address#+wordn" : type
TAB = *:(“TAB_ENTRY)1list"™ : t§peé

(FST entry)
(FST (SKD entry))
(SND (—ND entry))

Fdes live entry
t-g,f key entry
Fd,f content entry

Several auxiliary (recursive) definitions describe table operations below. When an entsy
is inserted into the top of table, the entry at the bottom will be lost only when the table
is “full” (all entries are Live). In this respect, the table acts as a quete.

Fg4 (TAB_FULL tbl 0 = 11ve (EL 0 tbl)) A

(TAB_FULL +b1 (SUC n) = (live (EL (SUC n) tbl) A TAB _FULL tbl n53

*‘dcf (TAB_INSERT tbl entry 0= [entry]) A
(TAB_INSERT tbl entry (SUC n) = (APPEND (TAB_INSERT tbl entry n)
((TAB_FULL tbl n) — [(EL n tb1)] | [(EL (SUC n) tbl)])))

A table lookup is successful if there is a key match for one of the entries. For a table
size of n, TAB_HIT returns (SUC n) if the lookup fails.

4y KEY_MATCH rep tbl sg:*address n =
(1ive(EL n tbl) A ((addrEq rep) (key(EL n tbl), sg)))
F4ep (TAB_HIT rep tbl sg m O =
((KEY_MATCH rep tbl sg 0) — 0 | (SUC m))) A
(TAB_HIT rep tbl sg m (SUC n) =

Frequently, a single matched entry must be mvahdated ThlS can occur due to the LRU
policy or a memory write operation. Occasionally, the entire cache must be invalidated at
the request of the operating system. The LRU policy requires that if a key match occurs,
the entry be inserted at the top of the table. By invalidating the matched entry before
the insertion, a table overflow will not occur. LRU_LOOKUP returns the requested data value
and the updated cache table.

UL Mmoo

TN T T T

3rd NASA Symposium on VLSI Design 1991 8.3.9

4. ENTRY_INVALIDATE entry = (F ,key entry, content entry)
F 4y (TAB_INVALIDATE tbl O = [(ENTRY_INVALIDATE (EL 0 tbl))]) A
(TAB_INVALIDATE tbl (SUC n) =
(APPEND (TAB_INVALIDATE tbl n) [(ENTRY_INVALIDATE (EL (SUC n) tbl))]1))
F4.s (DEL_TAB_ENTRY rep tbl sg 0 =
((KEY_MATCH rep tbl sg 0) — [(ENTRY_INVALIDATE (EL O tb1))] |
[(EL 0 tbl)])) A
(DEL_TAB_ENTRY rep tbl sg (SUC n) =
(APPEND (DEL_TAB_ENTRY rep tbl sg n)
((KEY_MATCH rep tbl sg (SUC n))
— [(ENTRY_INVALIDATE (EL (SUC n) tbl))]
[(EL (SUC n) tbl)])))

4 LRU_REPL rep tbl entry n = TAB_INSERT (DEL_TAB_ENTRY rep tbl (key entry) n)
entry n
4 LRU_LOOKUP rep mem tbl n addr data newTbl =
let who = (TAB_HIT rep tbl addr n n) in
({who = (SUC n))
— (data = fetch rep(mem, addr) A
newTbl = TAB_INSERT tbl (T,addr,(fetch rep(mem,addr))) n)
| (data = (content (EL who tbl) A
newTbl = LRU_REPL rep tbl (EL who tbl) n)

Using the above definitions, the cache-memory subsystem can be defined. This defini-
tion replaces memoryUnit_spec in the MMU specification and the new system is verified
in a similar manner. The proof shows that the cache/memory system is consitent with the
MMU memory model requirements.

Fdef cache_mem_spec r Treq IWe addr data done mem tbl n =
(done 0 = F) A
(W t. (req t) —
(3 t’. Next done (t, t+t’) A
(wBIT (rwe t) =>
((mem (t+t’) = store r (mem t,addr t,data t)) A
(tbl (t+t’) = DEL_TAB_ENTRY r (tbl t) (addr t) n) |
(LRU_LOOKUP r (mem t) (tbl t) n (addr t)
(data (t+t’)) (bl (t+t?))) A
(mem (t+t’) = mem t))))

((done (t+1) = F) A
(mem (t+1) = mem t) A
(tbl (t+1) = tbl t)))

Cache Implementation

The cache implementation consists of a control unit and a stack of cache cells. Cache
cells are the instantiation of the table entries described above—their state consisting of

8.3.10

req

address

state replStite spareln found above date
new glate sparceDat found dats
replState iparela fonad above dats
slate
new stafe sparceOut found dats

Figure 2: Cache Cell Stack

the three tuple: (valid, address key, data). The action of each cache cell is defined by a
two bit function code (req) sent by the cache control unit. The stack is formed by joining
the outputs of a cache unit to the inputs of the next. - :

Fdy (cache_block T state req sparceIn foundIn addr replState dataln 0 =
cache_cell rep 0 req addr replState (state,sparceIn,foundIn,dataln))
A _ LTI s i el oL L N
(cache_block fep state req sparceln foundIn addr replState dataln (SUC n) =
(cache_cell rep (SUC n) req addr (EL n state) ,
(cache_block rep state req sparceln foundIn addr replState dataln n)))

Fdes cache_cell_spec rep n req addr replState (stateIn,sparceln,foundIn,dataln) =
let state = (EL n stateIn) in
let match = (addrEq rep(addr,key state) A live state) in
(req = (F,F)) — Y IDLE Y ’

(statelIn, foundIn, (sparceIn V “live state), dataln) }
(req = (F,T)) — ¥ INVALIDATE ON MATCH Y
match — e
) (SET_EL n stateIn(F,key state,content state), T, T, content state Y
(stateln, foundIn, (sparceIn V “live state), dataln) Y |

(req = (T,F)) — Y IRVALIDATE A

(SET_EL n stateIn(F,key state,content state), foundIn, T, dataln) |
V.re? = (T,T) — PUSH DOWN % - Co

sparceln — - o

(stateIn, = foundIn, T, content state)

(SET_EL n stateIn replState, foundIn, F, dataln))

When a memory request is made, the control unit signals each cache cell to invalidate
its entry if its key matches the input address (F,T). Memory write requests are also passed
through to memory. If a read request is pending and the value is not in the cache, the
value is fetched from memory. We assume one clock cycle is needed to read a value out of
the cache if it is available. After the value fetch step is completed, the control unit pushes
the new value onto the cache cell stack by issuing request (T,T).

[T RE I T 1 O ™ (TN

3rd NASA Symposium on VLSI Design 1991 8.3.11

To model memory, the cache implementation uses the same memory unit specification
(memoryUnit_spec) stated previously. We then verify that the implementation behaves
as specified. The implementation also provides a means of invalidating the entire table
(request (T,F), however, this function is not present currently in the specification.

4 Summary

We have described the formal verification of an MMU and cache/memory subsystem.
The MMU has been verified to perform correctly with an asynchronous memory model.
The cache specification defines an LRU replacement policy which is implemented by an
electronic block level design. The cache is also demonstrated to be consitent with MMU
- memory model requirements.

It has been convenient to represent the behavior of devices using abstract representa-
tions. This mechanism allows the verification effort to focus on the correctness of higher
level abstraction. To verify a more concrete implementation, the abstract representation
can be instantiated with components that implement concrete behavior. Extending this
example, we plan to demonstrate how a complete system composed of many devices can
be shown to correctly implement an abstract system specification.

References

[1] W. R. Bevier, “Kit and the Short Stack,” Journal of Automated Reasoning, vol. 5,
1989.

[2] M. Gordon, “HOL: A Proof Generating System for Higher-Order Logic,” in VLSI
Specification, Verification, and Synthesis, (G. Birtwhistle and P. Subrahmanyam,
eds.), Kluwer Academic Press, 1988.

(3] E. T. Schubert and K. N. Levitt, “Verification of Memory Management Units,” 2nd

IFIP Working Conference on Dependable Computing for Critical Applications., Febru-
ary 1991.

[4] E. T. Schubert, “Formal Verification of an LRU Cache in Higher Order Logic,” tech-
nical report CSE-91-, University of California, Davis, September 1991.

[5] W. R. Bevier, W. A. Hunt, and W. D. Young, “Toward Verified Execution Environ-
ments,” IEEE Symposium on Security and Privacy, 1987.

[6] A. Cohn, “A Proof of Correctness of the VIPER Microprocessor: the First Level,” in

VLSI Specification, Verification, and Synthesis, (G. Birtwhistle and P. Subrahmanyam,
eds.), Kluwer Academic Press, 1988.

[7] W. A. Hunt, “A Verified Microprocessor,” Technical Report 47, The University of
Texas at Austin, Dec. 1985.

8.3.12

[8] W. A. Hunt, “Microprocessor Design Verification,” Journal of Automated Reasoning,
vol. §, 1989. : -

[9] J. J. Joyce, Multi-Level Verification of Microprocessor-Based S'yairerﬁs. "PhD thesis,
Cambridge University, December 1989. '

[10] P.J. Windley, The Formal Verification of Generic Interpreters. PhD thesis, University
of California, Davis, 1990. Rt N

[11] J. J. Joyce, “Tofalljr Verified Systems: Liriléiné Verified Software to Verified Hard-

ware,” Hardware Specification, Verification and Synthesis: Mathematical Aspects, July

11989, D o

[12] E. T. Schubert, “Verification of Memory Management Units using HOL,” technical
report CSE-90-27, University of California, Davis, August 1990.

PRI W Wi 0 BIme W on o w

trm

f

